Moving Media Esponenziale Decadimento


Media mobile esponenziale - EMA Abbattere media mobile esponenziale - EMA Il 12 e 26 giorni EMAs sono i più popolari medie a breve termine, e sono utilizzati per creare indicatori come la media mobile di convergenza divergenza (MACD) e l'oscillatore prezzo percentuale (PPO). In generale, il 50 e 200 giorni EMA sono utilizzati come segnali di tendenze a lungo termine. I commercianti che utilizzano l'analisi tecnica trovano medie mobili molto utili e penetranti se applicato correttamente, ma creano il caos quando viene utilizzato in modo improprio o sono male interpretato. Tutte le medie mobili comunemente utilizzati in analisi tecnica sono, per loro stessa natura, gli indicatori in ritardo di sviluppo. Di conseguenza, le conclusioni tratte da applicare una media mobile a un particolare schema di mercato dovrebbe essere quello di confermare una mossa di mercato o ad indicare la sua forza. Molto spesso, nel momento di una linea dell'indicatore di media mobile ha fatto un cambiamento per riflettere un movimento significativo nel mercato, il punto ottimale di ingresso sul mercato è già passato. Un EMA non serve per alleviare questo dilemma certa misura. Poiché il calcolo EMA mette più peso sui dati più recenti, si abbraccia l'azione dei prezzi un po 'più stretto e quindi reagisce più veloce. Ciò è desiderabile quando un EMA è usato per derivare un segnale di entrata negoziazione. Interpretazione del EMA Come tutti si muovono gli indicatori medi, sono molto più adatti per trend dei mercati. Quando il mercato è in una tendenza rialzista forte e sostenuta. la linea dell'indicatore EMA mostrerà anche una tendenza rialzista e viceversa per un trend verso il basso. Un operatore vigile non solo prestare attenzione alla direzione della linea EMA ma anche il rapporto tra il tasso di variazione da un bar all'altro. Per esempio, come l'azione prezzo di un forte rialzo comincia ad appiattirsi e invertire, il tasso di variazione EMA da un bar all'altro comincerà a diminuire fino al momento che la linea indicatrice appiattisce e il tasso di variazione è zero. A causa dell'effetto ritardo, da questo punto, o anche qualche bar prima, l'azione di prezzo dovrebbe già invertito. Ne consegue che osservare una diminuzione consistente del tasso di variazione della EMA potrebbe esso stesso essere usata come indicatore che potrebbe contrastare ulteriormente il dilemma causato dall'effetto ritardo di media mobile. Utilizzi comuni del EMA EMA sono comunemente usati in combinazione con altri indicatori per confermare significativi movimenti del mercato e di valutare la loro validità. Per gli operatori che commerciano intraday e mercati in rapida evoluzione, l'EMA è più applicabile. Molto spesso i commercianti usano EMAs per determinare un bias di trading. Ad esempio, se un EMA su un grafico giornaliero mostra una forte tendenza al rialzo, una strategia di trader intraday può essere quella di commerciare solo dal lato lungo su un intraday chart. Exploring esponenziale Weighted Moving volatilità media è la misura più comune del rischio, ma si tratta in vari gusti. In un precedente articolo, abbiamo mostrato come calcolare semplice volatilità storica. (Per leggere questo articolo, vedere Uso volatilità per valutare i rischi futuri.) Abbiamo usato Googles dati effettivi di prezzo delle azioni al fine di calcolare la volatilità giornaliera sulla base di 30 giorni di dati di stock. In questo articolo, miglioreremo il semplice volatilità e discutere la media mobile esponenziale ponderata (EWMA). Vs. Storico La volatilità implicita In primo luogo, consente di mettere questa metrica in un po 'di prospettiva. Ci sono due approcci: volatilità storica e implicita (o implicite). L'approccio storico presuppone che passato è prologo misuriamo la storia nella speranza che sia predittiva. La volatilità implicita, d'altra parte, ignora la storia si risolve per la volatilità implicita dai prezzi di mercato. Si spera che il mercato conosce meglio e che il prezzo di mercato contiene, anche se implicitamente, una stima di consenso di volatilità. (Per la lettura correlate, vedere gli usi e limiti di volatilità.) Se ci concentriamo solo su tre approcci storici (il alto a sinistra), hanno due punti in comune: Calcolare la serie di rendimenti periodici applicare uno schema di ponderazione In primo luogo, calcolare il ritorno periodico. Questo è in genere una serie di rendimenti giornalieri in cui ogni ritorno è espresso in termini di continuo composte. Per ogni giorno, prendiamo il logaritmo naturale del rapporto tra i prezzi delle azioni (cioè prezzo oggi divisi per prezzo di ieri, e così via). Questo produce una serie di rendimenti giornalieri, da u i u i-m. a seconda di quanti giorni (m giorni) stiamo misurando. Questo ci arriva al secondo passo: E 'qui che i tre approcci differenti. Nel precedente articolo (Utilizzo di volatilità per valutare rischio futuro), abbiamo dimostrato che in un paio di semplificazioni accettabili, la semplice varianza è la media dei rendimenti al quadrato: Si noti che questo riassume ciascuna delle dichiarazioni periodiche, poi divide che totale da parte del numero di giorni o osservazioni (m). Così, la sua realtà solo una media delle dichiarazioni periodiche squadrati. In altre parole, ogni ritorno quadrato viene dato un peso uguale. Quindi, se alfa (a) è un fattore di ponderazione (in particolare, un 1m), quindi un semplice scostamento simile a questa: Il EWMA migliora semplice varianza La debolezza di questo approccio è che tutti i ritorni guadagnano lo stesso peso. Yesterdays (molto recente) di ritorno non ha più influenza sulla varianza rispetto allo scorso mese di ritorno. Questo problema viene risolto utilizzando la media ponderata esponenzialmente movimento (EWMA), in cui i ritorni più recenti hanno un peso maggiore sulla varianza. La media mobile esponenziale ponderata (EWMA) introduce lambda. che è chiamato il parametro smoothing. Lambda deve essere inferiore a uno. In tale condizione, invece di pesi uguali, ogni ritorno quadrato è ponderato con un moltiplicatore come segue: Per esempio, RiskMetrics TM, una società finanziaria gestione del rischio, tende ad usare un lambda di 0,94 o 94. In questo caso, il primo ( più recente) al quadrato ritorno periodico è ponderato in base (1-0,94) (. 94) 0 6. il prossimo ritorno quadrato è semplicemente un lambda-multiplo del peso prima, in questo caso 6 moltiplicato per 94 5.64. E il terzo giorni precedenti peso uguale (1-0,94) (0,94) 2 5.30. Quello sensi esponenziale EWMA: ciascun peso è un moltiplicatore costante (cioè lambda, che deve essere inferiore a uno) della prima peso giorni. Questo assicura una varianza che viene ponderato o sbilanciata verso i dati più recenti. (Per ulteriori informazioni, controllare il foglio di lavoro Excel per Googles volatilità.) La differenza tra semplicemente volatilità e EWMA per Google è indicato di seguito. La volatilità semplice pesa in modo efficace ogni ritorno periodico da 0.196 come mostrato nella colonna O (abbiamo avuto due anni di dati di prezzo delle azioni quotidiane. Cioè 509 rendimenti giornalieri e il 1509 0.196). Ma si noti che Colonna P assegna un peso di 6, poi 5,64, quindi 5.3 e così via. Quello è l'unica differenza tra semplice varianza e EWMA. Ricorda: Dopo sommiamo l'intera serie (in Q colonna) abbiamo la varianza, che è il quadrato della deviazione standard. Se vogliamo la volatilità, abbiamo bisogno di ricordare di prendere la radice quadrata di tale varianza. Che cosa è la differenza di volatilità giornaliera tra la varianza e EWMA in caso Googles suo significativo: La semplice varianza ci ha dato una volatilità giornaliera di 2,4 ma il EWMA ha dato una volatilità giornaliera di soli 1.4 (vedere il foglio di calcolo per i dettagli). A quanto pare, Googles volatilità si stabilì più di recente, pertanto, una semplice variazione potrebbe essere artificialmente alto. Di oggi Variance è una funzione di preavviso Pior giorni Varianza Youll abbiamo bisogno di calcolare una lunga serie di pesi in modo esponenziale in declino. Abbiamo solito facciamo la matematica qui, ma una delle migliori caratteristiche del EWMA è che l'intera serie riduce convenientemente ad una formula ricorsiva: ricorsivo significa che i riferimenti varianza di oggi (cioè è una funzione del giorni prima varianza). È possibile trovare questa formula nel foglio di calcolo anche, e produce lo stesso risultato esatto come il calcolo longhand Dice: varianza di oggi (sotto EWMA) uguale varianza di ieri (ponderato per lambda) più il rendimento di ieri al quadrato (pesato da una lambda meno). Si noti come stiamo solo aggiungendo due termini insieme: ieri varianza ponderata e ieri ponderati, al quadrato di ritorno. Anche così, lambda è il nostro parametro smoothing. Un lambda più alto (ad esempio, come RiskMetrics 94) indica più lento decadimento della serie - in termini relativi, stiamo per avere più punti di dati nella serie e che stanno per cadere più lentamente. D'altra parte, se riduciamo lambda, indichiamo superiore decadimento: i pesi cadere fuori più rapidamente e, come risultato diretto del rapido decadimento, meno punti dati sono usati. (Nel foglio di calcolo, lambda è un ingresso, in modo da poter sperimentare con la sua sensibilità). Riassunto La volatilità è la deviazione standard istantanea di un magazzino e la metrica di rischio più comune. È anche la radice quadrata della varianza. Siamo in grado di misurare la varianza storicamente o implicitamente (volatilità implicita). Quando si misura storicamente, il metodo più semplice è semplice varianza. Ma la debolezza con una semplice varianza è tutti i ritorni ottenere lo stesso peso. Quindi ci troviamo di fronte un classico trade-off: vogliamo sempre più dati ma più dati che abbiamo più il nostro calcolo è diluito da dati lontani (meno rilevanti). La media mobile esponenziale ponderata (EWMA) migliora semplice varianza assegnando pesi alle dichiarazioni periodiche. In questo modo, siamo in grado di utilizzare una dimensione sia grande campione, ma anche dare maggior peso ai rendimenti più recenti. (Per visualizzare un tutorial film su questo argomento, visitare il Bionic Turtle.) Una misura del rapporto tra un cambiamento nella quantità domandata di un bene particolare e una variazione del suo prezzo. Prezzo. Il valore di mercato totale in dollari di tutto ad un company039s azioni in circolazione. La capitalizzazione di mercato è calcolato moltiplicando. Frexit abbreviazione di quotFrench exitquot è uno spin-off francese del termine Brexit, che è emerso quando il Regno Unito ha votato per. Un ordine con un broker che unisce le caratteristiche di ordine di stop con quelli di un ordine limite. Un ordine di stop-limite sarà. Un round di finanziamento in cui gli investitori acquistano magazzino da una società ad una valutazione inferiore rispetto alla stima collocato sul. Una teoria economica della spesa totale per l'economia e dei suoi effetti sulla produzione e l'inflazione. economia keynesiana è stata developed. Choosing la migliore linea di tendenza per i vostri dati quando si desidera aggiungere una linea di tendenza a un grafico in Microsoft Graph, è possibile scegliere uno qualsiasi dei sei diversi tipi trendregression. Il tipo di dati che avete determina il tipo di linea di tendenza si dovrebbe usare. affidabilità Trendline una linea di tendenza è più affidabile quando il suo valore R al quadrato è uguale o vicino a 1. Quando si forma una linea di tendenza per i dati, Grafico calcola automaticamente il valore R al quadrato. Se si desidera, è possibile visualizzare questo valore sul grafico. Una linea di tendenza lineare è una linea retta best-fit utilizzato con semplici insiemi di dati lineari. I dati è lineare se il modello nei suoi punti di dati assomiglia a una linea. Una linea di tendenza lineare, di solito indica che qualcosa sta aumentando o diminuendo ad un tasso costante. Nel seguente esempio, una linea di tendenza lineare, mostra chiaramente che le vendite frigorifero sono costantemente aumentati nel corso di un periodo di 13 anni. Si noti che il valore R-squared è 0,9036, che è una buona misura della linea per i dati. Una linea di tendenza logaritmica è una linea curva best-fit che è più utile quando il tasso di variazione dei dati aumenta o diminuisce rapidamente e poi livelli fuori. Una linea di tendenza logaritmica può utilizzare valori positivi eo negativo. L'esempio seguente utilizza una linea di tendenza logaritmica per illustrare la crescita della popolazione degli animali previsto in una zona a spazio fisso, dove la popolazione livellato come spazio per gli animali è diminuito. Si noti che il valore R-squared è 0,9407, che è relativamente buona misura della linea per i dati. Una linea di tendenza polinomiale è una linea curva che viene utilizzato quando i dati oscilla. È utile, per esempio, per analizzare utili e perdite su un grande insieme di dati. L'ordine del polinomio può essere determinata dal numero delle fluttuazioni nei dati o quante curve (colline e valli) appaiono nella curva. Un Ordine 2 polinomio trendline ha generalmente solo una collina o valle. Ordine 3 ha in genere uno o due colline o vallate. Ordine 4 ha generalmente fino a tre. L'esempio seguente mostra un Ordine 2 linea di tendenza polinomiale (una collina) per illustrare la relazione tra velocità e consumo di benzina. Si noti che il valore R-squared è 0,9474, che è una buona misura della linea per i dati. Una linea di tendenza alimentazione è una linea curva che è meglio utilizzato con insiemi di dati che confrontano le misure che aumentano ad un tasso specifico, per esempio, l'accelerazione di una macchina da corsa ad intervalli di un secondo. Non è possibile creare una linea di tendenza di alimentazione se i dati contengono zero o negativi valori. Nel seguente esempio, i dati di accelerazione è indicata riportando distanza in metri per secondo. La linea di tendenza potere dimostra chiaramente la crescente accelerazione. Si noti che il valore R-squared è 0,9923, che è una misura quasi perfetta della linea per i dati. Una linea di tendenza esponenziale è una linea curva che è più utile quando i valori dei dati aumentano o diminuiscono a tassi sempre più elevati. Non è possibile creare una linea di tendenza esponenziale se i dati contiene zero o negativi valori. Nel seguente esempio, una linea di tendenza esponenziale viene usata per illustrare la quantità decrescente di carbonio 14 in un oggetto con l'invecchiamento. Si noti che il valore R-squared è 1, il che significa che la linea si adatta perfettamente i dati. Una linea di tendenza media mobile appiana le fluttuazioni dei dati per mostrare un modello o una tendenza in modo più chiaro. Una linea di tendenza media mobile utilizza un determinato numero di punti di dati (definiti dall'opzione Periodo), medie, e utilizza il valore medio come un punto nella linea di tendenza. Se il periodo viene impostato su 2, per esempio, allora la media dei primi due punti dati viene utilizzato come primo punto del movimento trendline media. La media del secondo e terzo punto di dati viene utilizzato come secondo punto della linea di tendenza, e così via. Nel seguente esempio, una linea di tendenza media mobile mostra un modello in numero di case vendute in un periodo di 26 settimane.

Comments